BRAIN IMAGING, BLOOD AND CEREBROSPINAL FLUID BIOMARKERS FOR DIAGNOSIS OF ALZHEIMER'S DISEASE

> Michael W. Weiner MD Director, Center for Imaging of Neurodegenerative Diseases, VA Medical Center Professor of Radiology, Medicine, Psychiatry, and Neurology, UCSF

# **TOPICS REQUESTED**

- Current use of imaging/biomarkers in diagnosis
- Current use of imaging/biomarkers in research
- Distinguish FDA approved/non-approved diagnostic tests
- What should be considered as definitive for Social Security's purposes?????

# GENERAL USE OF TECHNOLOGY FOR DIAGNOSIS

- A century ago, all medical diagnosis was based on self-report/physical exam
- Widespread use of technology for diagnosis, early detection, risk assessment
  - Blood tests, imaging, EKG,etc
- Most diagnosis of neurological/psychiatric disorders based on self report/physical examination
  - Imaging/biomarkers have limited but growing use

# CURRENT DIAGNOSIS OF ALZHEIMER'S DISEASE

- Clinical diagnosis
- Requires presence of dementia
- Growing recognition that AD pathology exists for many years prior to dementia
  - Asymptomatic phase
  - Mild symptoms, mild cognitive impairments
  - Dementia

# IMAGING FOR DIAGNOSIS OF ALZHEIMER'S DISEASE

- Uses:
  - Diagnosis
  - Prediction of future decline/dementia (Research!)
    - early detection
    - Risk assessment
  - Clinical trials
- Imaging Modalities
  - Computerized tomography
  - MRI: many types of MRI scans
  - PET: FDG, amyloid scans

# STRUCTURAL MRI Normal Elderly Brain (FDA approved)





# Alzheimer's Atrophy





Age: 62 Sex: Male Dx: AD Probable

# Alzheimer's Atrophy





Age: 87 Sex: Female Dx: AD Probable

## Frontal-Temporal Dementia (FTD)





Age: 52 Sex: Female Dx: FTD

### WMSH With Lacunes



Age: 80 Sex: Male Dx: IVD

# **USE OF MRI**

- Rules out other causes
  - Tumors, bleeding, multiple sclerosis etc
  - Suggests other causes of dementia
    - Frontotemporal dementia
- Provides confirmatory evidence
  - Atrophy of brain esp hippocampus: not diagnostic
- Many research uses
  - Emphasis on predicting future decline
  - Identifying AD pathology

# POSITRON EMISSION TOMOGROPHY (PET)

- Fluro Deoxyglucose PET: FDA approved
   Widely used for cancer staging
  - Approved by CMS for 'differentiating AD from FTD (long story)
    - Some evidence of widespread abuse/misuse
  - Not approved for Dx of AD
- FDG PET does help "rule in" AD
- Many research uses

#### Normal Aging vs. Alzheimer's Disease Positron Emission Tomography (PET)

Normal



AD

# **AMYLOID PET**

- A technique to detect presence of amyloid plaques in the brain
  - Amyloid plaques = AD pathology (?)
- Carbon 11 Pittsburgh compound B
- Four commercially produced F18 amyloid agents: GE, Bayer, AstraZeneca, AVID

   In phase 3
- Likely to be approved 'to detect amyloid'

- Diagnostic claims uncertain

# PIB in Controls, MCI, AD



# PIB Imaging: Alzheimer's Disease



FDG



# FDA AND PIB PET Frontotemporal Dementia





# WHAT IS ROLE OF AMYLOID PET FOR DIAGNOSIS ETC?

- Currently undetermined
- Could be used to "rule out" AD pathology
- Could be used for early detection of AD pathology
  - A risk factor for cognitive decline/dementia
  - PIB+ seems to predict future decline/dementia
- Lots of research to do: will take years

### **BLOOD AND CSF BIOMARKERS**

- Abeta amyloid (various species)
  - Measurement in CSF
    - Seems to have some diagnostic use
    - Use by some in clinical practice: not widespread
  - Measurement in blood: research value only
- Tau: a measure of neurodegenerattion CSF
  - May have clinical value: lots of research
- Other proteins: Blood and CSF
- RNA expression: Blood

#### **BIOMARKERS** John Trojanowski, Les Shaw, U Penn.

| AD (n=10 | )2)  | Tau    | <b>Α</b> β <sub>1-42</sub> | P-Tau <sub>181P</sub> | <b>Tau/A</b> β <sub>1-42</sub> | <b>Ρ-Ταυ<sub>181Ρ</sub>/Α</b> β <sub>1-42</sub> |
|----------|------|--------|----------------------------|-----------------------|--------------------------------|-------------------------------------------------|
| Mean     |      | 122±58 | 143±41                     | 42±20                 | 0.9±0.5                        | 0.3±0.2                                         |
|          |      |        |                            |                       |                                |                                                 |
| MCI (n=2 | 200) |        |                            |                       |                                |                                                 |
| Mean:    |      | 103±61 | 164±55                     | 35±18                 | 0.8±0.6                        | 0.3±0.2                                         |
|          |      |        |                            |                       |                                |                                                 |
| NC (n=1  | 14)  |        |                            |                       |                                |                                                 |
| Mean     | ±SD  | 70+30  | 206+55                     | 25+15                 | 0 4+0 3                        | 0 1+0 1                                         |
|          |      |        |                            |                       |                                |                                                 |

p<0.0001, for each of the 5 biomarker tests for AD vs NC and for MCI vs NC.

For AD vs MCI:p<0.005, Tau; p<0.01,  $A\beta_{1-42}$ ; p<0.01, P-Tau <sub>181P</sub>; p<0.005, Tau/A $\beta_{1-42}$ ; p<0.005, P-Tau <sub>181P</sub>/A $\beta_{1-42}$ . Mann-Whitney test

# PIB vs CSF Biomarkers: Aβ

Total N = 55 (11 Control, 34 MCI, 10 AD)



**Mean Cortical SUVR** 

## AMYLOID IMAGING VS CSF ANALYSIS

- Thus far CSF analysis (\$300) seems to provide similar predictive information to amyloid imaging (\$>300)
- But there is resistance to lumbar puncture
- More research needed
- Public acceptance of LPs would be helpful

USING IMAGING/CSF BIOMARKERS TO DETECT AD IN HEALTY NORMALS

- Early data suggests that a substantial minority of healthy normal
  - + amyloid imaging
  - Low CSF amyloid
- These subjects *may* be at increased risk fo cognitive decline and dementia
- Much important research to do
- Technologies will improve

#### **DIFFUSION SPECTRUM IMAGING**

#### **MEASURES BRAIN CONNECTIVITY**



# **SUMMARY**

- Currently MRI is approved
  - To rule out other causes of dementia
  - Also provide evidence in favor of Dx
- FDG PET approved AD/FTD
  - Also provides evidnece in favor of Dx
- CSF analysis is used by some – For diagnosis risk assessment
- F 18 amyloid imaging has promise – Advantage over CSF?
- Much research to be done



### COSTS TO SOCIAL SECURITY

- Dementia already costs US economy over \$120 billion/yr
- AD research is underfunded compared to heart disease (NHBL) and cancer (NCI)
- How could SS/CMS funds be used to support dementia prevention research?
- It would be useful to estimate the savings to SSN/CMS by treatment/prevention of AD